Hypoxia induces the proliferation of endothelial progenitor cells via upregulation of Apelin/APLNR/MAPK signaling.
نویسندگان
چکیده
Endothelial progenitor cells (EPCs) can form new vessels through differentiation into endothelial cells (ECs), thus being important in the prevention of hypoxia/ischemia. Apelin can activate different signaling pathways through its receptor, APLNR, which regulate diverse biological functions, including cardiovascular function. However, the molecular mechanism by which Apelin mediates hypoxia-induced EPCs proliferation remain to be fully elucidated. The present study aimed to determine the role of Apelin/APLNR signaling in hypoxia-induced proliferation of EPCs. MTT assay was used to determine cell proliferation. Reverse transcription-quantitative polymerase chain reaction and western blotting analysis were conducted to examine mRNA and protein expression. It was revealed that hypoxia promoted the proliferation of the EPCs. Further investigation demonstrated that hypoxia promoted the expression levels of hypoxia-inducible factor (HIF)-1α, Apelin and APLNR in the EPCs. In addition, upregulation of Apelin or APLNR promoted the hypoxia-induced proliferation of the EPCs, while knockdown of Apelin or APLNR by small interfering RNA suppressed the hypoxia-induced proliferation of the EPCs, suggesting that the Apelin/APLNR axis is involved in hypoxia-induced proliferation of EPCs. Furthermore, pretreatment of the EPCs with SB-239063 or PD98059, two inhibitors of mitogen-activated protein kinase (MAPK), eliminated the Apelin upregulation-induced EPC proliferation, suggesting that MAPK signaling is a downstream effecter of Apelin/APLNR in EPCs. Therefore, the findings of the present study indicated that the production of HIF-1α, induced by hypoxia, activated the Apelin/APLNR and the downstream MAPK signaling pathways, leading to upregulated proliferation of the EPCs. These findings suggested that Apelin/APLNR signaling may be used as a potential therapeutic target for hypoxic/ischemic injury.
منابع مشابه
Apelin and pulmonary hypertension
Pulmonary arterial hypertension (PAH) is a devastating disease characterized by pulmonary vasoconstriction, pulmonary arterial remodeling, abnormal angiogenesis and impaired right ventricular function. Despite progress in pharmacological therapy, there is still no cure for PAH. The peptide apelin and the G-protein coupled apelin receptor (APLNR) are expressed in several tissues throughout the o...
متن کاملIntermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro
Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...
متن کاملPromoting Effects of the Adipokine, Apelin, on Diabetic Nephropathy
Angiogenesis, increased glomerular permeability, and albuminuria are thought to contribute to the progression of diabetic nephropathy (DN). Apelin receptor (APLNR) and the endogenous ligand of APLNR, apelin, induce the sprouting of endothelial cells in an autocrine or paracrine manner, which may be one of the mechanisms of DN. The aim of this study was to investigate the role of apelin in the p...
متن کاملA role for endothelial cells in promoting the maturation of astrocytes through the apelin/APJ system in mice.
Interactions between astrocytes and endothelial cells (ECs) are crucial for retinal vascular formation. Astrocytes induce migration and proliferation of ECs via their production of vascular endothelial growth factor (VEGF) and, conversely, ECs induce maturation of astrocytes possibly by the secretion of leukemia inhibitory factor (LIF). Together with the maturation of astrocytes, this finalizes...
متن کاملThe Aplnr GPCR regulates myocardial progenitor development via a novel cell-non-autonomous, Gαi/o protein-independent pathway
Myocardial progenitor development involves the migration of cells to the anterior lateral plate mesoderm (ALPM) where they are exposed to the necessary signals for heart development to proceed. Whether the arrival of cells to this location is sufficient, or whether earlier signaling events are required, for progenitor development is poorly understood. Here we demonstrate that in the absence of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular medicine reports
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2016